Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli.

نویسندگان

  • I Nelken
  • E D Young
چکیده

1. The principal cells of the dorsal cochlear nucleus (DCN) are mostly inhibited by best frequency (BF) tones but are mostly excited by broadband noise (BBN), producing the so-called type IV response characteristic. The narrowband inhibitory responses can be explained by the inhibitory influence of interneurons with type II response characteristics. However, it is not clear that all the details of the type IV responses can be accounted for by this neural circuit. In particular, many type IV units are inhibited by band-reject noise (notch noise); type II units tend to be only weakly excited by these stimuli, if at all. In this paper we study the relationships between the narrowband, inhibitory and the wideband, excitatory regimens of the type IV responses and present the case for the existence of a second inhibitory source in DCN, called the wideband inhibitor (WBI) below. 2. Type IV units were studied using pure tones, noise bands arithmetically centered on BF, notch noise centered on BF, and BBN. We measured the rate-level function (response rate as function of stimulus level) for each stimulus. This paper is based on the responses of 28 type IV units. 3. Evidence for low-threshold inhibitory input to type IV units is derived from analysis of rate-level functions at sound levels just above threshold. Notch noise stimuli of the appropriate notch width produce inhibition at threshold in this regime. When BBN is presented, this inhibition appears to summate with excitation produced by energy in the band of noise centered on BF, resulting in BBN rate-level functions with decreased slope and maximum firing rate. A range of slopes and maximal firing rates is observed, but these variables are strongly correlated and they are negatively correlated with the strength of the inhibition produced by notch noise; this result supports the conclusion that a single inhibitory source is responsible for these effects. 4. By contrast, there is a weak (nonsignificant) positive correlation between the strength of the inhibitory effect of notch noise and the slope/maximal firing rate in response to narrowband stimuli, including BF tones. The contrast between this positive nonsignificant correlation and the significant negative correlation mentioned above suggests that more than one inhibitory effect operates: specifically, the type II input is responsible for inhibition by narrowband stimuli and a different inhibitory source, the WBI, produces inhibition by notch stimuli. 5. Several lines of evidence are given to show that type II units cannot produce the inhibition seen with notch noise stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear and nonlinear spectral integration in type IV neurons of the dorsal cochlear nucleus. II. Predicting responses with the use of nonlinear models.

Two nonlinear modeling methods were used to characterize the input/output relationships of type IV units, which are one principal cell type in the dorsal cochlear nucleus (DCN). In both cases, the goal was to derive predictive models, i.e., models that could predict the responses to other stimuli. In one method, frequency integration was estimated from response maps derived from single tones an...

متن کامل

Linear and nonlinear spectral integration in type IV neurons of the dorsal cochlear nucleus. I. Regions of linear interaction.

The principal neurons of the dorsal cochlear nucleus have complex response properties, many of which are classified as type IV. These units integrate energy in the acoustic signal in a nonlinear fashion; for example, at high sound levels the response to a noise of narrow bandwidth and to a band-reject filtered noise with a spectral notch of the same bandwidth may both be inhibitory. However, th...

متن کامل

Evidence of stimulus-dependent correlated activity in the dorsal cochlear nucleus of decerebrate gerbils.

Cross-correlation analysis of simultaneously recorded spike trains was used to study the internal organization of the dorsal cochlear nucleus (DCN) of unanesthetized decerebrate Mongolian gerbils. The goal was to test the model (adapted from cat) that its principal cells (type III and type IV units) receive three sources of shared auditory input: excitatory input from the auditory nerve; inhibi...

متن کامل

Spectral integration by type II interneurons in dorsal cochlear nucleus.

The type II unit is a prominent inhibitory interneuron in the dorsal cochlear nucleus (DCN), most likely recorded from vertical cells. Type II units are characterized by low rates of spontaneous activity, weak responses to broadband noise, and vigorous, narrowly tuned responses to tones. The weak responses of type II units to broadband stimuli are unusual for neurons in the lower auditory syste...

متن کامل

A spectrotemporal analysis of DCN single unit responses to wideband in guinea pig

Spectrotemporal receptive fields (STRFs) were estimated for chopper and pauser units recorded in guinea pig dorsal cochlear nucleus (DCN). Sixteen wideband, periodic noise stimuli. represented as time-frequency surfaces of energy density. were crosscorrelated in time with the unit’s corresponding period histograms to determine if specific energy patterns tended to precede spike occurrence. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 71 6  شماره 

صفحات  -

تاریخ انتشار 1994